

2. The Role of Color 10 of 14 2.2 Color for robots

Contrast: Early robots (re. manufacturing environments) did not heavily rely on perception channels. Yet, machines have capabilities huge in terms of data nuclear acquisition (from magnetic resonance tomography to billion-year-old light wave acquisition in space with Hubble) In particular, vision can be very effective in perceptive applications. Here, with focus on vision and color sensing. Three steps: goal, advantages and drawbacks

> Jean-Daniel Dessimoz, HESSO.HEIG-VD, Int. Conf. SIMPAR-CSCPR 2010, 16 Nov.2010

17

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

3.1 Light properties

- A common, but strange, definition of intelligence implies that AI is impossible: intelligence is a property exclusively implemented in humans. People who subscribe to this view likely have a similar opinion regarding vision: anything that can be achieved by machines is by definition a trick or minor solution, but can never really be considered AI or vision.

- Vision can schematically be split into three phases:
 - **1.** Image acquisition : the proper mapping of features from the real, physical world to a table of numbers in memory, a 2-D image.
 - 2. 2D image processing, e.g., smoothing, edgeextraction, or blob labeling.
 - 3. Scene analysis: extracting specific features from 2D images, allowing for relevant image analysis, e.g., the size and location of an object.

Jean-Daniel Dessimoz, HESSO.HEIG-VD, Int. Conf. SIMPAR-CSCPR 2010, 16 Nov.2010

3. Recommended Modalities 5 of 7 3.2 Preferred modalities

- Vision is often a very complex faculty. Successful color-based vision typically requires taking into account the following elements :
 - Focus on selected applications and goals (e.g., 11-pixel-based banknote recognition).
 - Special attention to primary features and precursors ("pre-color features" e.g., fluorescence, reflectance, shadow casting, surface orientation, and index of refraction of the transparent-media lens effect) and not only on common secondary features (e.g. blob area)

Jean-Daniel Dessimoz, HESSO.HEIG-VD, Int. Conf. SIMPAR-CSCPR 2010, 16 Nov.2010 28

- Scene analysis is most often done on the basis of very simple image components such as selected pixels or one or a few line segments.
- When regions are considered, typically as blobs, they are typically characterized by their colors, sizes and locations.
- Semantically, either the individual components are relevant, or more globally, the specific structures may turn out to be useful clues in considered scenes

Jean-Daniel Dessimoz, HESSO.HEIG-VD, Int. Conf. SIMPAR-CSCPR 2010, 16 Nov.2010

5. Conclusion 3 of 4

While a nine-color approach is an effective solution which combines simplicity and immunity to noise in a manner similar to that used with Boolean signals, more discrimination power is often required. For this purpose, a Saturation-based Weighted Color Difference approach is proposed (SbWCD), both at the pixel level, and, for more demanding cases in which patterns are the key, for a specific difference estimation of correlation type.

> Jean-Daniel Dessimoz, HESSO.HEIG-VD, Int. Conf. SIMPAR-CSCPR 2010, 16 Nov.2010

November 2 nd Intern SIMULAT for AUTC	15-18, 2010 - Darmstadt, Germany actional Conference on TON, MODELING, and PROGRAMMING DNOMOUS ROBOTS	3		SIMPA 2010	R D		
Constant .				14.00-15.30	Workshop/Tutorial sessions		
1				101	Model-Driven Software Development in Robotics	3.0	
Home	Author's Area Program Invited Speakers Travel 8	Co	Exhibition SIMPA	WSZ	Traching relation technologies in the Robot Development Process	3.0	
Scherlule On Site Talks Posters Workshops Tritorials Social Events			**35	Biomechanical Simulation of Humans and Bio-Inspired Humanoids	5.0		
science on site raiks rosters workshops rational's SOCial EVents				WS7	(BH) ² Workshop	3.0	
Sunday November 14 News			15.30-16.00	Coffee break	3.1		
18.00 Sunday evening welcome tour Wednesday, Novemb			16.00-17.30	Workshop/Tutorial sessions			
Monday November 15 Detailed program of			TU1	Model-Driven Software Development in Robotics	3.0		
09.00-10.30	Workshop sessions		presentations is on	WS2	Simulation Technologies in the Robot Development Process	3.0	
WS1	International Workshop on Dynamic languages for RObotic and Sensors sustame (DYROS)	3.06	Wednesday, Novemb Workshop schedule	WS5	Teaching robotics, teaching with robotics	3.0	
W52	Simulation Technologies in the Robot Development Process	3.07	workshop websites.	WS7	Biomechanical Simulation of Humans and Bio-Inspired Humanoids	3.0	
W52	Domestic Service Robots in the Real World	3.03	Tuesday, October 07,		(BH) ² Workshop		
WSS	Teaching robotics teaching with robotics	3.02	approaching!	17.30	Workshop reception	3.1	
	iomechanical Simulation of Humans and Bio-Inspired Humanoids E-Mail Forw			Tuesday November 16			
WS7	(BH) ² Workshop	3.05		08.30-10.00	Workshop/Tutorial sessions		
10.30-11.00	Coffee break	3.11	General Chair g	WS4	Brain Computer Interface	3.0	
11.00-12.30	Workshop sessions		Program Chairs p	WS6	Standards and Common Platforms for Robotics (SCPR 2010)	3.0	
WS1	International Workshop on Dynamic languages for RObotic and	3.06	Exhibition Chair e	TU2	An Introduction to the OpenSim API	3.0	
	Sensors systems (DYROS)	2.07	Tutorial Chair ti	10.00-10.30	Coffee break	3.1	
wsz wcz	Demostic Convice Debate in the Root Development Process	3.07	worksnop chair wi	10.30-12.00	Workshop/Tutorial sessions		
W53	Togehing relation togehing with relation	3.03	Lincoming Impr	WS4	Brain Computer Interface	3.0	
W35	Biomechanical Simulation of Humans and Bio-Inspired Humanoide	5.52	Submission of state	WS6	Standards and Common Platforms for Robotics (SCPR 2010)	3.0	
WS7	(BH) ² Workshop	3.05	spotlight gong show	TU2	An Introduction to the OpenSim API	3.0	
12.30-14.00	Lunch break Jean-Daniel	Des	simoz MHESS	AMPR	LNTDbrenkt		
	Conf. SIME	AR-I	DSRRW/ 2010) 16 N	lov 2010 62		